The radius of almost convexity of order $\alpha$ in the class of univalent functions
Matematičeskie zametki, Tome 20 (1976) no. 1, pp. 105-112
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper the radius of almost convexity of order $\alpha$ in the class of functions $f(z)=z+a_2z^2+\dots$ analytic and univalent in $|z|<1$ is found. The solution to a problem of A. Renyi is given in this connection.
@article{MZM_1976_20_1_a10,
author = {P. I. Sizhuk},
title = {The radius of almost convexity of order $\alpha$ in the class of univalent functions},
journal = {Matemati\v{c}eskie zametki},
pages = {105--112},
year = {1976},
volume = {20},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1976_20_1_a10/}
}
P. I. Sizhuk. The radius of almost convexity of order $\alpha$ in the class of univalent functions. Matematičeskie zametki, Tome 20 (1976) no. 1, pp. 105-112. http://geodesic.mathdoc.fr/item/MZM_1976_20_1_a10/