The radius of almost convexity of order $\alpha$ in the class of univalent functions
Matematičeskie zametki, Tome 20 (1976) no. 1, pp. 105-112.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper the radius of almost convexity of order $\alpha$ in the class of functions $f(z)=z+a_2z^2+\dots$ analytic and univalent in $|z|1$ is found. The solution to a problem of A. Renyi is given in this connection.
@article{MZM_1976_20_1_a10,
     author = {P. I. Sizhuk},
     title = {The radius of almost convexity of order $\alpha$ in the class of univalent functions},
     journal = {Matemati\v{c}eskie zametki},
     pages = {105--112},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1976_20_1_a10/}
}
TY  - JOUR
AU  - P. I. Sizhuk
TI  - The radius of almost convexity of order $\alpha$ in the class of univalent functions
JO  - Matematičeskie zametki
PY  - 1976
SP  - 105
EP  - 112
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1976_20_1_a10/
LA  - ru
ID  - MZM_1976_20_1_a10
ER  - 
%0 Journal Article
%A P. I. Sizhuk
%T The radius of almost convexity of order $\alpha$ in the class of univalent functions
%J Matematičeskie zametki
%D 1976
%P 105-112
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1976_20_1_a10/
%G ru
%F MZM_1976_20_1_a10
P. I. Sizhuk. The radius of almost convexity of order $\alpha$ in the class of univalent functions. Matematičeskie zametki, Tome 20 (1976) no. 1, pp. 105-112. http://geodesic.mathdoc.fr/item/MZM_1976_20_1_a10/