A~cyclic sum with 12 terms
Matematičeskie zametki, Tome 19 (1976) no. 6, pp. 873-885.

Voir la notice de l'article provenant de la source Math-Net.Ru

The inequality $$ \sum_{i=1}^{12}\frac{x_i}{x_{i+1}+x_{i+2}}\ge6 $$ is proved for all $x_i\ge0$, $x_i+x_{i+1}>0$ where $x_{12+i}=x_i$
@article{MZM_1976_19_6_a7,
     author = {E. K. Godunova and V. I. Levin},
     title = {A~cyclic sum with 12 terms},
     journal = {Matemati\v{c}eskie zametki},
     pages = {873--885},
     publisher = {mathdoc},
     volume = {19},
     number = {6},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1976_19_6_a7/}
}
TY  - JOUR
AU  - E. K. Godunova
AU  - V. I. Levin
TI  - A~cyclic sum with 12 terms
JO  - Matematičeskie zametki
PY  - 1976
SP  - 873
EP  - 885
VL  - 19
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1976_19_6_a7/
LA  - ru
ID  - MZM_1976_19_6_a7
ER  - 
%0 Journal Article
%A E. K. Godunova
%A V. I. Levin
%T A~cyclic sum with 12 terms
%J Matematičeskie zametki
%D 1976
%P 873-885
%V 19
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1976_19_6_a7/
%G ru
%F MZM_1976_19_6_a7
E. K. Godunova; V. I. Levin. A~cyclic sum with 12 terms. Matematičeskie zametki, Tome 19 (1976) no. 6, pp. 873-885. http://geodesic.mathdoc.fr/item/MZM_1976_19_6_a7/