Structure of continuous functions of a~completely regular space
Matematičeskie zametki, Tome 19 (1976) no. 6, pp. 863-869.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that any completely regular topological space is determined up to homeomorphism by the topological lattice (with the topology of pointwise convergence) of all its continuous real-valued functions. The well-known result of Kaplansky (for compact spaces) is a corollary of this theorem.
@article{MZM_1976_19_6_a5,
     author = {V. V. Pashenkov},
     title = {Structure of continuous functions of a~completely regular space},
     journal = {Matemati\v{c}eskie zametki},
     pages = {863--869},
     publisher = {mathdoc},
     volume = {19},
     number = {6},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1976_19_6_a5/}
}
TY  - JOUR
AU  - V. V. Pashenkov
TI  - Structure of continuous functions of a~completely regular space
JO  - Matematičeskie zametki
PY  - 1976
SP  - 863
EP  - 869
VL  - 19
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1976_19_6_a5/
LA  - ru
ID  - MZM_1976_19_6_a5
ER  - 
%0 Journal Article
%A V. V. Pashenkov
%T Structure of continuous functions of a~completely regular space
%J Matematičeskie zametki
%D 1976
%P 863-869
%V 19
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1976_19_6_a5/
%G ru
%F MZM_1976_19_6_a5
V. V. Pashenkov. Structure of continuous functions of a~completely regular space. Matematičeskie zametki, Tome 19 (1976) no. 6, pp. 863-869. http://geodesic.mathdoc.fr/item/MZM_1976_19_6_a5/