The topological models of intuitionistic anlaysis. One counterexample
Matematičeskie zametki, Tome 19 (1976) no. 6, pp. 859-862
Voir la notice de l'article provenant de la source Math-Net.Ru
In the paper we prove the falsity of the complete Brouwer principle in a topological model of intuitionistic analysis, constructed by Moschovakis. We present a counterexample showing the impossibility of extending this model and Scott's model up to a model of intuitionistic analysis with the complete Brouwer principle.
@article{MZM_1976_19_6_a4,
author = {M. D. Krol'},
title = {The topological models of intuitionistic anlaysis. {One} counterexample},
journal = {Matemati\v{c}eskie zametki},
pages = {859--862},
publisher = {mathdoc},
volume = {19},
number = {6},
year = {1976},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1976_19_6_a4/}
}
M. D. Krol'. The topological models of intuitionistic anlaysis. One counterexample. Matematičeskie zametki, Tome 19 (1976) no. 6, pp. 859-862. http://geodesic.mathdoc.fr/item/MZM_1976_19_6_a4/