Exact inequalities for splines and best quadrature formulas for certain classes of functions
Matematičeskie zametki, Tome 19 (1976) no. 6, pp. 913-926
Voir la notice de l'article provenant de la source Math-Net.Ru
In this note inequalities between the norms of a spline and its derivatives in various Orlich spaces are obtained. These inequalities are analogs of the inequalities of L. V. Takov for trigonometrical polynomials and generalize S. N. Bernstein's inequalities. An inequality for monosplines which reduces to the best quadrature formula for the classes $W^rL_1$, where $r=1,2,\dots$, is also obtained. For $r=2,4,6,\dots$ this result was obtained earlier by V. P. Motornyi.
@article{MZM_1976_19_6_a10,
author = {A. A. Ligun},
title = {Exact inequalities for splines and best quadrature formulas for certain classes of functions},
journal = {Matemati\v{c}eskie zametki},
pages = {913--926},
publisher = {mathdoc},
volume = {19},
number = {6},
year = {1976},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1976_19_6_a10/}
}
TY - JOUR AU - A. A. Ligun TI - Exact inequalities for splines and best quadrature formulas for certain classes of functions JO - Matematičeskie zametki PY - 1976 SP - 913 EP - 926 VL - 19 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_1976_19_6_a10/ LA - ru ID - MZM_1976_19_6_a10 ER -
A. A. Ligun. Exact inequalities for splines and best quadrature formulas for certain classes of functions. Matematičeskie zametki, Tome 19 (1976) no. 6, pp. 913-926. http://geodesic.mathdoc.fr/item/MZM_1976_19_6_a10/