Semiplane lattices over irreducible groups
Matematičeskie zametki, Tome 19 (1976) no. 6, pp. 833-842.

Voir la notice de l'article provenant de la source Math-Net.Ru

Among transitive $G$-lattices we can distinguish a rather broad class of so-called semiplane lattices associated with the semidirect product of a Lie group $H$ and a certain automorphism group $G$ of it. It turns out that semiplane lattices are almost always plane in the irreducible case, i.e., we can take it that group $H$ is commutative. An exception is the case of the adjoined representation of a simple Lie group. We have also proved that if group $G$ is involutive and has a “small” radical, then all transitive $G$-lattices turn out to be semiplane.
@article{MZM_1976_19_6_a1,
     author = {P. Ya. Grushko},
     title = {Semiplane lattices over irreducible groups},
     journal = {Matemati\v{c}eskie zametki},
     pages = {833--842},
     publisher = {mathdoc},
     volume = {19},
     number = {6},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1976_19_6_a1/}
}
TY  - JOUR
AU  - P. Ya. Grushko
TI  - Semiplane lattices over irreducible groups
JO  - Matematičeskie zametki
PY  - 1976
SP  - 833
EP  - 842
VL  - 19
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1976_19_6_a1/
LA  - ru
ID  - MZM_1976_19_6_a1
ER  - 
%0 Journal Article
%A P. Ya. Grushko
%T Semiplane lattices over irreducible groups
%J Matematičeskie zametki
%D 1976
%P 833-842
%V 19
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1976_19_6_a1/
%G ru
%F MZM_1976_19_6_a1
P. Ya. Grushko. Semiplane lattices over irreducible groups. Matematičeskie zametki, Tome 19 (1976) no. 6, pp. 833-842. http://geodesic.mathdoc.fr/item/MZM_1976_19_6_a1/