The $\mathfrak F$-length of finite groups
Matematičeskie zametki, Tome 19 (1976) no. 5, pp. 745-754
Cet article a éte moissonné depuis la source Math-Net.Ru
L. A. Shemetkov [1] defined the concept of the $p$-length of an arbitrary finite group, generalizing the concept of the $p$-length of a $p$-solvable finite group of Hall–Higman [2]. In this article we introduce a more general concept of the $\mathfrak F$-length of an arbitrary finite group with respect to a certain formation $\mathfrak F$, and bounds on $\mathfrak F$-lengths and $p$-lengths are given for arbitrary finite groups.
@article{MZM_1976_19_5_a9,
author = {V. I. Kharlamova},
title = {The $\mathfrak F$-length of finite groups},
journal = {Matemati\v{c}eskie zametki},
pages = {745--754},
year = {1976},
volume = {19},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1976_19_5_a9/}
}
V. I. Kharlamova. The $\mathfrak F$-length of finite groups. Matematičeskie zametki, Tome 19 (1976) no. 5, pp. 745-754. http://geodesic.mathdoc.fr/item/MZM_1976_19_5_a9/