Infinite groups satisfying the normalizer condition for nonprimary subgroups
Matematičeskie zametki, Tome 19 (1976) no. 5, pp. 727-734
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we study infinite groups satisfying the normalizer condition for nonprimary subgroups. We show, in particular, that a nonprimary periodic group satisfying this condition is locally finite if the intersection of all its nonprimary subgroups is finite. We establish the local nilpotency of a nonperiodic group satisfying the normalizer condition for nonprimary subgroups. This implies the theorem of S. N. Chernikov which states that a nonperiodic group in which each infinite proper subgroup is different from its normalizer satisfies the normalizer condition.
@article{MZM_1976_19_5_a7,
author = {K. Sh. Kemkhadze},
title = {Infinite groups satisfying the normalizer condition for nonprimary subgroups},
journal = {Matemati\v{c}eskie zametki},
pages = {727--734},
publisher = {mathdoc},
volume = {19},
number = {5},
year = {1976},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1976_19_5_a7/}
}
K. Sh. Kemkhadze. Infinite groups satisfying the normalizer condition for nonprimary subgroups. Matematičeskie zametki, Tome 19 (1976) no. 5, pp. 727-734. http://geodesic.mathdoc.fr/item/MZM_1976_19_5_a7/