2-Divisible groups over~$Z$
Matematičeskie zametki, Tome 19 (1976) no. 5, pp. 717-726.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we construct nontrivial 2-divisible groups over $Z$ which are isogenous to trivial groups and prove the following: \underline{THEOREM.} If the height h of a 2-divisible group $\{G^{(\nu)}\}$ over $Z$ is at most 4, then $\{G^{(\nu)}\}$ is isogenous to a trivial group.
@article{MZM_1976_19_5_a6,
     author = {V. A. Abrashkin},
     title = {2-Divisible groups over~$Z$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {717--726},
     publisher = {mathdoc},
     volume = {19},
     number = {5},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1976_19_5_a6/}
}
TY  - JOUR
AU  - V. A. Abrashkin
TI  - 2-Divisible groups over~$Z$
JO  - Matematičeskie zametki
PY  - 1976
SP  - 717
EP  - 726
VL  - 19
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1976_19_5_a6/
LA  - ru
ID  - MZM_1976_19_5_a6
ER  - 
%0 Journal Article
%A V. A. Abrashkin
%T 2-Divisible groups over~$Z$
%J Matematičeskie zametki
%D 1976
%P 717-726
%V 19
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1976_19_5_a6/
%G ru
%F MZM_1976_19_5_a6
V. A. Abrashkin. 2-Divisible groups over~$Z$. Matematičeskie zametki, Tome 19 (1976) no. 5, pp. 717-726. http://geodesic.mathdoc.fr/item/MZM_1976_19_5_a6/