The best approximation of classes $W_1^r(I^s)$ in the space $L_\infty(I^s)$
Matematičeskie zametki, Tome 19 (1976) no. 5, pp. 699-706.

Voir la notice de l'article provenant de la source Math-Net.Ru

A method is proposed which enables us to obtain the best upper bounds for the $n$-diameters of multidmensional Sobolev classes $W_1^r(I^s)$ in the metric of $L_\infty(I^s)$.
@article{MZM_1976_19_5_a4,
     author = {V. E. Maiorov},
     title = {The best approximation of classes $W_1^r(I^s)$ in the space $L_\infty(I^s)$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {699--706},
     publisher = {mathdoc},
     volume = {19},
     number = {5},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1976_19_5_a4/}
}
TY  - JOUR
AU  - V. E. Maiorov
TI  - The best approximation of classes $W_1^r(I^s)$ in the space $L_\infty(I^s)$
JO  - Matematičeskie zametki
PY  - 1976
SP  - 699
EP  - 706
VL  - 19
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1976_19_5_a4/
LA  - ru
ID  - MZM_1976_19_5_a4
ER  - 
%0 Journal Article
%A V. E. Maiorov
%T The best approximation of classes $W_1^r(I^s)$ in the space $L_\infty(I^s)$
%J Matematičeskie zametki
%D 1976
%P 699-706
%V 19
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1976_19_5_a4/
%G ru
%F MZM_1976_19_5_a4
V. E. Maiorov. The best approximation of classes $W_1^r(I^s)$ in the space $L_\infty(I^s)$. Matematičeskie zametki, Tome 19 (1976) no. 5, pp. 699-706. http://geodesic.mathdoc.fr/item/MZM_1976_19_5_a4/