The best approximation of classes $W_1^r(I^s)$ in the space $L_\infty(I^s)$
Matematičeskie zametki, Tome 19 (1976) no. 5, pp. 699-706
Cet article a éte moissonné depuis la source Math-Net.Ru
A method is proposed which enables us to obtain the best upper bounds for the $n$-diameters of multidmensional Sobolev classes $W_1^r(I^s)$ in the metric of $L_\infty(I^s)$.
@article{MZM_1976_19_5_a4,
author = {V. E. Maiorov},
title = {The best approximation of classes $W_1^r(I^s)$ in the space $L_\infty(I^s)$},
journal = {Matemati\v{c}eskie zametki},
pages = {699--706},
year = {1976},
volume = {19},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1976_19_5_a4/}
}
V. E. Maiorov. The best approximation of classes $W_1^r(I^s)$ in the space $L_\infty(I^s)$. Matematičeskie zametki, Tome 19 (1976) no. 5, pp. 699-706. http://geodesic.mathdoc.fr/item/MZM_1976_19_5_a4/