Deformability of surfaces of positive curvature
Matematičeskie zametki, Tome 19 (1976) no. 5, pp. 815-823
Voir la notice de l'article provenant de la source Math-Net.Ru
For surfaces of positive Gaussian curvature bounded away from zero the following statement is proved: A piece of a given surface containing a preassigned finite set of points and having a Lyapunov boundary can be deformed with an arbitrary given (as large as we like) bending at these points under the condition that the area of the piece is sufficiently small.
@article{MZM_1976_19_5_a16,
author = {S. B. Klimentov},
title = {Deformability of surfaces of positive curvature},
journal = {Matemati\v{c}eskie zametki},
pages = {815--823},
publisher = {mathdoc},
volume = {19},
number = {5},
year = {1976},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1976_19_5_a16/}
}
S. B. Klimentov. Deformability of surfaces of positive curvature. Matematičeskie zametki, Tome 19 (1976) no. 5, pp. 815-823. http://geodesic.mathdoc.fr/item/MZM_1976_19_5_a16/