$K$-spaces of constant holomorphic sectional curvature
Matematičeskie zametki, Tome 19 (1976) no. 5, pp. 805-814
Voir la notice de l'article provenant de la source Math-Net.Ru
In this note we prove the equivalence of the pointwise constancy and the global constancy of the holomorphic sectional curvature of a $K$-space. A criterion for the constancy of the holomorphic sectional curvature of a $K$-space is found. It is proved that every proper $K$-space of constant holomorphic sectional curvature is a six-dimensional orientable Riemannian manifold of constant positive curvature, which is isometric with the six-dimensional sphere in the case of completeness and connectedness.
@article{MZM_1976_19_5_a15,
author = {V. F. Kirichenko},
title = {$K$-spaces of constant holomorphic sectional curvature},
journal = {Matemati\v{c}eskie zametki},
pages = {805--814},
publisher = {mathdoc},
volume = {19},
number = {5},
year = {1976},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1976_19_5_a15/}
}
V. F. Kirichenko. $K$-spaces of constant holomorphic sectional curvature. Matematičeskie zametki, Tome 19 (1976) no. 5, pp. 805-814. http://geodesic.mathdoc.fr/item/MZM_1976_19_5_a15/