An extremal theorem of Riemannian geometry
Matematičeskie zametki, Tome 19 (1976) no. 5, pp. 795-804
Voir la notice de l'article provenant de la source Math-Net.Ru
An exact upper estimate for the volume of a tubular neighborhood of a smooth submanifold $N$ of a complete Riemann space $M$ depending upon the volume of $N$ and lower bound for the sectional curvatures of $M$ is given. If $N$ is a closed geodesic, then the equality is attained in the estimate if and only if $M$ is a generalized lens space.
@article{MZM_1976_19_5_a14,
author = {S. V. Buyalo},
title = {An extremal theorem of {Riemannian} geometry},
journal = {Matemati\v{c}eskie zametki},
pages = {795--804},
publisher = {mathdoc},
volume = {19},
number = {5},
year = {1976},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1976_19_5_a14/}
}
S. V. Buyalo. An extremal theorem of Riemannian geometry. Matematičeskie zametki, Tome 19 (1976) no. 5, pp. 795-804. http://geodesic.mathdoc.fr/item/MZM_1976_19_5_a14/