The representations of functions by orthogonal series possessing martingale properties
Matematičeskie zametki, Tome 19 (1976) no. 5, pp. 673-680
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $\mathscr F_\infty$ be the minimal $\sigma$-algebra generated by the orthogonal system $\{\varphi_n(x)\}$, defined on the space $(X,S,\mu)$ of finite measure. For a certain class of orthonormal systems one proves that for any $\mathscr F_\infty$-measurable function $f(x)$, which is finite almost everywhere, there exists a series $\sum_{n=1}^\infty a_n\varphi_n(x)$ which converges absolutely to $f(x)$ almost everywhere. This result represents an extension of a theorem by R. Gundy on the representation of functions by orthogonal series possessing martingale properties.
@article{MZM_1976_19_5_a1,
author = {R. S. Davtyan},
title = {The representations of functions by orthogonal series possessing martingale properties},
journal = {Matemati\v{c}eskie zametki},
pages = {673--680},
year = {1976},
volume = {19},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1976_19_5_a1/}
}
R. S. Davtyan. The representations of functions by orthogonal series possessing martingale properties. Matematičeskie zametki, Tome 19 (1976) no. 5, pp. 673-680. http://geodesic.mathdoc.fr/item/MZM_1976_19_5_a1/