The asymptotic representation at a point of the derivative of orthonormal polynomials
Matematičeskie zametki, Tome 19 (1976) no. 5, pp. 659-672.

Voir la notice de l'article provenant de la source Math-Net.Ru

A theorem is proved on the asymptotic representation at the pointe $e^{i\theta_0}$ of the first derivative of polynomials, orthonormal on the unit circumference, under the following conditions: the weight $\varphi(\theta)$ is bounded from above, the function $\varphi^{-2}(\theta)$ is summable on the segment $[-\pi,\pi]$; at the $\eta_0$ neighborhood of the point $\theta=\theta_0$ the weight is bounded from below by a positive constant and has a bounded variation; the trigonometric conjugate $\widetilde{\ln\varphi(\theta_0)}$ exists. These restrictions are less restrictive than those in Ch. Hörup's similar theorem.
@article{MZM_1976_19_5_a0,
     author = {B. L. Golinskii},
     title = {The asymptotic representation at a point of the derivative of orthonormal polynomials},
     journal = {Matemati\v{c}eskie zametki},
     pages = {659--672},
     publisher = {mathdoc},
     volume = {19},
     number = {5},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1976_19_5_a0/}
}
TY  - JOUR
AU  - B. L. Golinskii
TI  - The asymptotic representation at a point of the derivative of orthonormal polynomials
JO  - Matematičeskie zametki
PY  - 1976
SP  - 659
EP  - 672
VL  - 19
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1976_19_5_a0/
LA  - ru
ID  - MZM_1976_19_5_a0
ER  - 
%0 Journal Article
%A B. L. Golinskii
%T The asymptotic representation at a point of the derivative of orthonormal polynomials
%J Matematičeskie zametki
%D 1976
%P 659-672
%V 19
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1976_19_5_a0/
%G ru
%F MZM_1976_19_5_a0
B. L. Golinskii. The asymptotic representation at a point of the derivative of orthonormal polynomials. Matematičeskie zametki, Tome 19 (1976) no. 5, pp. 659-672. http://geodesic.mathdoc.fr/item/MZM_1976_19_5_a0/