Serre Lie algebras of generalized Jacobians
Matematičeskie zametki, Tome 19 (1976) no. 4, pp. 571-576.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work we construct an example of a generalized Jacobian of an elliptic curve defined over a field of algebraic numbers $k$ such that the Serre Lie algebra $p$-adic representation of the Galois group of the algebraic closure of the field $k$ in its Tate module is irreducible.
@article{MZM_1976_19_4_a9,
     author = {G. V. Belyi and V. A. Korolevich},
     title = {Serre {Lie} algebras of generalized {Jacobians}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {571--576},
     publisher = {mathdoc},
     volume = {19},
     number = {4},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1976_19_4_a9/}
}
TY  - JOUR
AU  - G. V. Belyi
AU  - V. A. Korolevich
TI  - Serre Lie algebras of generalized Jacobians
JO  - Matematičeskie zametki
PY  - 1976
SP  - 571
EP  - 576
VL  - 19
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1976_19_4_a9/
LA  - ru
ID  - MZM_1976_19_4_a9
ER  - 
%0 Journal Article
%A G. V. Belyi
%A V. A. Korolevich
%T Serre Lie algebras of generalized Jacobians
%J Matematičeskie zametki
%D 1976
%P 571-576
%V 19
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1976_19_4_a9/
%G ru
%F MZM_1976_19_4_a9
G. V. Belyi; V. A. Korolevich. Serre Lie algebras of generalized Jacobians. Matematičeskie zametki, Tome 19 (1976) no. 4, pp. 571-576. http://geodesic.mathdoc.fr/item/MZM_1976_19_4_a9/