Serre Lie algebras of generalized Jacobians
Matematičeskie zametki, Tome 19 (1976) no. 4, pp. 571-576
Cet article a éte moissonné depuis la source Math-Net.Ru
In this work we construct an example of a generalized Jacobian of an elliptic curve defined over a field of algebraic numbers $k$ such that the Serre Lie algebra $p$-adic representation of the Galois group of the algebraic closure of the field $k$ in its Tate module is irreducible.
@article{MZM_1976_19_4_a9,
author = {G. V. Belyi and V. A. Korolevich},
title = {Serre {Lie} algebras of generalized {Jacobians}},
journal = {Matemati\v{c}eskie zametki},
pages = {571--576},
year = {1976},
volume = {19},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1976_19_4_a9/}
}
G. V. Belyi; V. A. Korolevich. Serre Lie algebras of generalized Jacobians. Matematičeskie zametki, Tome 19 (1976) no. 4, pp. 571-576. http://geodesic.mathdoc.fr/item/MZM_1976_19_4_a9/