The zeros of a~Dirichlet $L$ function on the critical line
Matematičeskie zametki, Tome 19 (1976) no. 4, pp. 561-570.

Voir la notice de l'article provenant de la source Math-Net.Ru

Selberg's result on the zeros of the Riemann $\zeta$ function for $\operatorname{Re}s=1/2$ is generalized to the derivatives of Dirichlet $L$ functions. In the proof Selberg's method and Lavrik's truncated functional equation are used in an essential way.
@article{MZM_1976_19_4_a8,
     author = {V. G. Zhuravlev},
     title = {The zeros of {a~Dirichlet} $L$ function on the critical line},
     journal = {Matemati\v{c}eskie zametki},
     pages = {561--570},
     publisher = {mathdoc},
     volume = {19},
     number = {4},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1976_19_4_a8/}
}
TY  - JOUR
AU  - V. G. Zhuravlev
TI  - The zeros of a~Dirichlet $L$ function on the critical line
JO  - Matematičeskie zametki
PY  - 1976
SP  - 561
EP  - 570
VL  - 19
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1976_19_4_a8/
LA  - ru
ID  - MZM_1976_19_4_a8
ER  - 
%0 Journal Article
%A V. G. Zhuravlev
%T The zeros of a~Dirichlet $L$ function on the critical line
%J Matematičeskie zametki
%D 1976
%P 561-570
%V 19
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1976_19_4_a8/
%G ru
%F MZM_1976_19_4_a8
V. G. Zhuravlev. The zeros of a~Dirichlet $L$ function on the critical line. Matematičeskie zametki, Tome 19 (1976) no. 4, pp. 561-570. http://geodesic.mathdoc.fr/item/MZM_1976_19_4_a8/