The zeros of a~Dirichlet $L$ function on the critical line
Matematičeskie zametki, Tome 19 (1976) no. 4, pp. 561-570
Voir la notice de l'article provenant de la source Math-Net.Ru
Selberg's result on the zeros of the Riemann $\zeta$ function for $\operatorname{Re}s=1/2$ is generalized to the derivatives of Dirichlet $L$ functions. In the proof Selberg's method and Lavrik's truncated functional equation are used in an essential way.
@article{MZM_1976_19_4_a8,
author = {V. G. Zhuravlev},
title = {The zeros of {a~Dirichlet} $L$ function on the critical line},
journal = {Matemati\v{c}eskie zametki},
pages = {561--570},
publisher = {mathdoc},
volume = {19},
number = {4},
year = {1976},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1976_19_4_a8/}
}
V. G. Zhuravlev. The zeros of a~Dirichlet $L$ function on the critical line. Matematičeskie zametki, Tome 19 (1976) no. 4, pp. 561-570. http://geodesic.mathdoc.fr/item/MZM_1976_19_4_a8/