The continuity of the metric projection on a~subspace of finite codimension in the space of continuous functions
Matematičeskie zametki, Tome 19 (1976) no. 4, pp. 531-539.

Voir la notice de l'article provenant de la source Math-Net.Ru

The closed subspaces of finite codimension of the space $C(X)$ of all continuous real-valued functions on a compact Hausdorff space $X$, for which the set of elements of best approximations of every function $f\in C(X)$ is nonempty and compact, are characterized. It is shown that if the compact Hausdorff space $X$ is infinite, then $C(X)$ has no subspace of a finite Codimension $n>1$ which has a nonempty set of elements of the best approximation for an arbitrary function $f\in C(X)$ and which has an upper-semicontinuous metric projection.
@article{MZM_1976_19_4_a5,
     author = {E. V. Oshman},
     title = {The continuity of the metric projection on a~subspace of finite codimension in the space of continuous functions},
     journal = {Matemati\v{c}eskie zametki},
     pages = {531--539},
     publisher = {mathdoc},
     volume = {19},
     number = {4},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1976_19_4_a5/}
}
TY  - JOUR
AU  - E. V. Oshman
TI  - The continuity of the metric projection on a~subspace of finite codimension in the space of continuous functions
JO  - Matematičeskie zametki
PY  - 1976
SP  - 531
EP  - 539
VL  - 19
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1976_19_4_a5/
LA  - ru
ID  - MZM_1976_19_4_a5
ER  - 
%0 Journal Article
%A E. V. Oshman
%T The continuity of the metric projection on a~subspace of finite codimension in the space of continuous functions
%J Matematičeskie zametki
%D 1976
%P 531-539
%V 19
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1976_19_4_a5/
%G ru
%F MZM_1976_19_4_a5
E. V. Oshman. The continuity of the metric projection on a~subspace of finite codimension in the space of continuous functions. Matematičeskie zametki, Tome 19 (1976) no. 4, pp. 531-539. http://geodesic.mathdoc.fr/item/MZM_1976_19_4_a5/