The logarithmic derivative of a~meromorphic function
Matematičeskie zametki, Tome 19 (1976) no. 4, pp. 525-530
Voir la notice de l'article provenant de la source Math-Net.Ru
A well-known lemma on the logarithmic derivative for a function $f(z)$, $f(0)=1$ ($0$), meromorphic in $\{|z|$ is proved in the following form:
$$
m\Bigl(r,\frac{f'}f\Bigr)+\Bigl\{\frac{T(\rho,f)}r\frac\rho{\rho-r}\Bigr\}+5,\!8501.
$$ This estimate is more exact than the one previously obtained by Kolokol'nikov and is, in a certain sense, unimprovable.
@article{MZM_1976_19_4_a4,
author = {A. A. Gol'dberg and V. A. Grinshtein},
title = {The logarithmic derivative of a~meromorphic function},
journal = {Matemati\v{c}eskie zametki},
pages = {525--530},
publisher = {mathdoc},
volume = {19},
number = {4},
year = {1976},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1976_19_4_a4/}
}
A. A. Gol'dberg; V. A. Grinshtein. The logarithmic derivative of a~meromorphic function. Matematičeskie zametki, Tome 19 (1976) no. 4, pp. 525-530. http://geodesic.mathdoc.fr/item/MZM_1976_19_4_a4/