The logarithmic derivative of a~meromorphic function
Matematičeskie zametki, Tome 19 (1976) no. 4, pp. 525-530.

Voir la notice de l'article provenant de la source Math-Net.Ru

A well-known lemma on the logarithmic derivative for a function $f(z)$, $f(0)=1$ ($0$), meromorphic in $\{|z|$ is proved in the following form: $$ m\Bigl(r,\frac{f'}f\Bigr)+\Bigl\{\frac{T(\rho,f)}r\frac\rho{\rho-r}\Bigr\}+5,\!8501. $$ This estimate is more exact than the one previously obtained by Kolokol'nikov and is, in a certain sense, unimprovable.
@article{MZM_1976_19_4_a4,
     author = {A. A. Gol'dberg and V. A. Grinshtein},
     title = {The logarithmic derivative of a~meromorphic function},
     journal = {Matemati\v{c}eskie zametki},
     pages = {525--530},
     publisher = {mathdoc},
     volume = {19},
     number = {4},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1976_19_4_a4/}
}
TY  - JOUR
AU  - A. A. Gol'dberg
AU  - V. A. Grinshtein
TI  - The logarithmic derivative of a~meromorphic function
JO  - Matematičeskie zametki
PY  - 1976
SP  - 525
EP  - 530
VL  - 19
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1976_19_4_a4/
LA  - ru
ID  - MZM_1976_19_4_a4
ER  - 
%0 Journal Article
%A A. A. Gol'dberg
%A V. A. Grinshtein
%T The logarithmic derivative of a~meromorphic function
%J Matematičeskie zametki
%D 1976
%P 525-530
%V 19
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1976_19_4_a4/
%G ru
%F MZM_1976_19_4_a4
A. A. Gol'dberg; V. A. Grinshtein. The logarithmic derivative of a~meromorphic function. Matematičeskie zametki, Tome 19 (1976) no. 4, pp. 525-530. http://geodesic.mathdoc.fr/item/MZM_1976_19_4_a4/