Two close sets of bounded variation
Matematičeskie zametki, Tome 19 (1976) no. 4, pp. 653-656
Cet article a éte moissonné depuis la source Math-Net.Ru
If two subsets of bounded variation in Euclidean space are close in the deviation metric, then on almost all $k$-dimensional planes, except perhaps on a set of planes of small measure, their intersections with $k$-dimensional planes are also close.
@article{MZM_1976_19_4_a19,
author = {V. S. Meilanov},
title = {Two close sets of bounded variation},
journal = {Matemati\v{c}eskie zametki},
pages = {653--656},
year = {1976},
volume = {19},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1976_19_4_a19/}
}
V. S. Meilanov. Two close sets of bounded variation. Matematičeskie zametki, Tome 19 (1976) no. 4, pp. 653-656. http://geodesic.mathdoc.fr/item/MZM_1976_19_4_a19/