Two close sets of bounded variation
Matematičeskie zametki, Tome 19 (1976) no. 4, pp. 653-656.

Voir la notice de l'article provenant de la source Math-Net.Ru

If two subsets of bounded variation in Euclidean space are close in the deviation metric, then on almost all $k$-dimensional planes, except perhaps on a set of planes of small measure, their intersections with $k$-dimensional planes are also close.
@article{MZM_1976_19_4_a19,
     author = {V. S. Meilanov},
     title = {Two close sets of bounded variation},
     journal = {Matemati\v{c}eskie zametki},
     pages = {653--656},
     publisher = {mathdoc},
     volume = {19},
     number = {4},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1976_19_4_a19/}
}
TY  - JOUR
AU  - V. S. Meilanov
TI  - Two close sets of bounded variation
JO  - Matematičeskie zametki
PY  - 1976
SP  - 653
EP  - 656
VL  - 19
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1976_19_4_a19/
LA  - ru
ID  - MZM_1976_19_4_a19
ER  - 
%0 Journal Article
%A V. S. Meilanov
%T Two close sets of bounded variation
%J Matematičeskie zametki
%D 1976
%P 653-656
%V 19
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1976_19_4_a19/
%G ru
%F MZM_1976_19_4_a19
V. S. Meilanov. Two close sets of bounded variation. Matematičeskie zametki, Tome 19 (1976) no. 4, pp. 653-656. http://geodesic.mathdoc.fr/item/MZM_1976_19_4_a19/