An analog of the Vitali-Hahn-Saks theorem
Matematičeskie zametki, Tome 19 (1976) no. 4, pp. 641-652.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper considers $N$-triangular $s$-bounded set functions. We prove for these functions a fairly close analog both of the Vitali–Hahn–Saks theorem and of the corresponding results of Brooks and Darst for finitely additive vector measures. As simple corollaries, we obtain various modifications of the Vitali–Hahn–Saks theorem for certain classes of additive and nonadditive scalar and vector-valued set functions.
@article{MZM_1976_19_4_a18,
     author = {N. S. Gusel'nikov},
     title = {An analog of the {Vitali-Hahn-Saks} theorem},
     journal = {Matemati\v{c}eskie zametki},
     pages = {641--652},
     publisher = {mathdoc},
     volume = {19},
     number = {4},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1976_19_4_a18/}
}
TY  - JOUR
AU  - N. S. Gusel'nikov
TI  - An analog of the Vitali-Hahn-Saks theorem
JO  - Matematičeskie zametki
PY  - 1976
SP  - 641
EP  - 652
VL  - 19
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1976_19_4_a18/
LA  - ru
ID  - MZM_1976_19_4_a18
ER  - 
%0 Journal Article
%A N. S. Gusel'nikov
%T An analog of the Vitali-Hahn-Saks theorem
%J Matematičeskie zametki
%D 1976
%P 641-652
%V 19
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1976_19_4_a18/
%G ru
%F MZM_1976_19_4_a18
N. S. Gusel'nikov. An analog of the Vitali-Hahn-Saks theorem. Matematičeskie zametki, Tome 19 (1976) no. 4, pp. 641-652. http://geodesic.mathdoc.fr/item/MZM_1976_19_4_a18/