Estimate for the spectrum of an operator bundle and its application to stability problems
Matematičeskie zametki, Tome 19 (1976) no. 4, pp. 611-614.

Voir la notice de l'article provenant de la source Math-Net.Ru

Simple estimates are obtained for the spectrum of the operator bundle $R(\lambda)=\sum_{i=0}^nA_{n-i}\lambda^i$ in terms of estimates of the maximum and minimum eigenvalues of the operators $\frac12(A_{n-i}+A_{n-i}^*)$ $(i=0,1,2,\dots,n)$ and the norms of the operators $\frac12(A_{n-i}-A_{n-i}^*)$ $(i=0,1,2,\dots,n)$. We formulate a criterion of the asymptotic stability of the differential equations $$ \sum_{i=0}^nA_{n-i}\frac{d^{(i)}x}{dt^i}=0 $$ We present examples of the stability conditions for equations with $n=2$ and $n=3$.
@article{MZM_1976_19_4_a14,
     author = {V. I. Frolov},
     title = {Estimate for the spectrum of an operator bundle and its application to stability problems},
     journal = {Matemati\v{c}eskie zametki},
     pages = {611--614},
     publisher = {mathdoc},
     volume = {19},
     number = {4},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1976_19_4_a14/}
}
TY  - JOUR
AU  - V. I. Frolov
TI  - Estimate for the spectrum of an operator bundle and its application to stability problems
JO  - Matematičeskie zametki
PY  - 1976
SP  - 611
EP  - 614
VL  - 19
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1976_19_4_a14/
LA  - ru
ID  - MZM_1976_19_4_a14
ER  - 
%0 Journal Article
%A V. I. Frolov
%T Estimate for the spectrum of an operator bundle and its application to stability problems
%J Matematičeskie zametki
%D 1976
%P 611-614
%V 19
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1976_19_4_a14/
%G ru
%F MZM_1976_19_4_a14
V. I. Frolov. Estimate for the spectrum of an operator bundle and its application to stability problems. Matematičeskie zametki, Tome 19 (1976) no. 4, pp. 611-614. http://geodesic.mathdoc.fr/item/MZM_1976_19_4_a14/