Estimate for the spectrum of an operator bundle and its application to stability problems
Matematičeskie zametki, Tome 19 (1976) no. 4, pp. 611-614
Voir la notice de l'article provenant de la source Math-Net.Ru
Simple estimates are obtained for the spectrum of the operator bundle $R(\lambda)=\sum_{i=0}^nA_{n-i}\lambda^i$ in terms of estimates of the maximum and minimum eigenvalues of the operators $\frac12(A_{n-i}+A_{n-i}^*)$ $(i=0,1,2,\dots,n)$ and the norms of the operators $\frac12(A_{n-i}-A_{n-i}^*)$ $(i=0,1,2,\dots,n)$. We formulate a criterion of the asymptotic stability of the differential equations
$$
\sum_{i=0}^nA_{n-i}\frac{d^{(i)}x}{dt^i}=0
$$
We present examples of the stability conditions for equations with $n=2$ and $n=3$.
@article{MZM_1976_19_4_a14,
author = {V. I. Frolov},
title = {Estimate for the spectrum of an operator bundle and its application to stability problems},
journal = {Matemati\v{c}eskie zametki},
pages = {611--614},
publisher = {mathdoc},
volume = {19},
number = {4},
year = {1976},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1976_19_4_a14/}
}
V. I. Frolov. Estimate for the spectrum of an operator bundle and its application to stability problems. Matematičeskie zametki, Tome 19 (1976) no. 4, pp. 611-614. http://geodesic.mathdoc.fr/item/MZM_1976_19_4_a14/