An inverse problem for an equation of parabolic type
Matematičeskie zametki, Tome 19 (1976) no. 4, pp. 595-600.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider an inverse problem for the differential equationu $$ t=u_{xx}+q(x, t)u; $$ the problem amounts to finding the coefficient $q(x,t)$ from the solution of a series of Cauchy problems for this equation, the solution being specified on some manifold. Our main result is a proof of a uniqueness theorem.
@article{MZM_1976_19_4_a12,
     author = {V. G. Romanov},
     title = {An inverse problem for an equation of parabolic type},
     journal = {Matemati\v{c}eskie zametki},
     pages = {595--600},
     publisher = {mathdoc},
     volume = {19},
     number = {4},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1976_19_4_a12/}
}
TY  - JOUR
AU  - V. G. Romanov
TI  - An inverse problem for an equation of parabolic type
JO  - Matematičeskie zametki
PY  - 1976
SP  - 595
EP  - 600
VL  - 19
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1976_19_4_a12/
LA  - ru
ID  - MZM_1976_19_4_a12
ER  - 
%0 Journal Article
%A V. G. Romanov
%T An inverse problem for an equation of parabolic type
%J Matematičeskie zametki
%D 1976
%P 595-600
%V 19
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1976_19_4_a12/
%G ru
%F MZM_1976_19_4_a12
V. G. Romanov. An inverse problem for an equation of parabolic type. Matematičeskie zametki, Tome 19 (1976) no. 4, pp. 595-600. http://geodesic.mathdoc.fr/item/MZM_1976_19_4_a12/