An inverse problem for an equation of parabolic type
Matematičeskie zametki, Tome 19 (1976) no. 4, pp. 595-600
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we consider an inverse problem for the differential equationu
$$
t=u_{xx}+q(x, t)u;
$$
the problem amounts to finding the coefficient $q(x,t)$ from the solution of a series of Cauchy problems for this equation, the solution being specified on some manifold. Our main result is a proof of a uniqueness theorem.
@article{MZM_1976_19_4_a12,
author = {V. G. Romanov},
title = {An inverse problem for an equation of parabolic type},
journal = {Matemati\v{c}eskie zametki},
pages = {595--600},
publisher = {mathdoc},
volume = {19},
number = {4},
year = {1976},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1976_19_4_a12/}
}
V. G. Romanov. An inverse problem for an equation of parabolic type. Matematičeskie zametki, Tome 19 (1976) no. 4, pp. 595-600. http://geodesic.mathdoc.fr/item/MZM_1976_19_4_a12/