Chebyshev subspaces of vector-valued functions
Matematičeskie zametki, Tome 19 (1976) no. 3, pp. 347-352
Voir la notice de l'article provenant de la source Math-Net.Ru
It is shown that if on a compact space $Q$ any polynomial $P_N(z)=\sum_1^Na_i\begin{pmatrix}f_{i1}\\\vdots\\f_{is}\end{pmatrix}$, $\sum_1^N|a_i|^2>0$, in a system of continuous vector functions with real coefficients such that $N=n\cdot s$ and $s=2p+1$ has at most $n-1$ zeros, then $Q$ is homeomorphic to a circle or a part of one.
@article{MZM_1976_19_3_a3,
author = {\`E. N. Morozov},
title = {Chebyshev subspaces of vector-valued functions},
journal = {Matemati\v{c}eskie zametki},
pages = {347--352},
publisher = {mathdoc},
volume = {19},
number = {3},
year = {1976},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1976_19_3_a3/}
}
È. N. Morozov. Chebyshev subspaces of vector-valued functions. Matematičeskie zametki, Tome 19 (1976) no. 3, pp. 347-352. http://geodesic.mathdoc.fr/item/MZM_1976_19_3_a3/