Two sufficient conditions for the univalence of analytic functions
Matematičeskie zametki, Tome 19 (1976) no. 3, pp. 331-346
Voir la notice de l'article provenant de la source Math-Net.Ru
In this article we obtain sufficient conditions for the univalence of $n$-symmetric analytic functions in the region $|\zeta|>-1$ and in the disk $|\zeta|-1$. We examine the question of univalent variation of functions analytic in $|\zeta|-1$ and mapping $|\zeta|=1$ onto a contour with two zero angles. We give an application of these results to the fundamental converse boundary-value problems.
@article{MZM_1976_19_3_a2,
author = {V. P. Mikka},
title = {Two sufficient conditions for the univalence of analytic functions},
journal = {Matemati\v{c}eskie zametki},
pages = {331--346},
publisher = {mathdoc},
volume = {19},
number = {3},
year = {1976},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1976_19_3_a2/}
}
V. P. Mikka. Two sufficient conditions for the univalence of analytic functions. Matematičeskie zametki, Tome 19 (1976) no. 3, pp. 331-346. http://geodesic.mathdoc.fr/item/MZM_1976_19_3_a2/