Two sufficient conditions for the univalence of analytic functions
Matematičeskie zametki, Tome 19 (1976) no. 3, pp. 331-346.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article we obtain sufficient conditions for the univalence of $n$-symmetric analytic functions in the region $|\zeta|>-1$ and in the disk $|\zeta|-1$. We examine the question of univalent variation of functions analytic in $|\zeta|-1$ and mapping $|\zeta|=1$ onto a contour with two zero angles. We give an application of these results to the fundamental converse boundary-value problems.
@article{MZM_1976_19_3_a2,
     author = {V. P. Mikka},
     title = {Two sufficient conditions for the univalence of analytic functions},
     journal = {Matemati\v{c}eskie zametki},
     pages = {331--346},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1976_19_3_a2/}
}
TY  - JOUR
AU  - V. P. Mikka
TI  - Two sufficient conditions for the univalence of analytic functions
JO  - Matematičeskie zametki
PY  - 1976
SP  - 331
EP  - 346
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1976_19_3_a2/
LA  - ru
ID  - MZM_1976_19_3_a2
ER  - 
%0 Journal Article
%A V. P. Mikka
%T Two sufficient conditions for the univalence of analytic functions
%J Matematičeskie zametki
%D 1976
%P 331-346
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1976_19_3_a2/
%G ru
%F MZM_1976_19_3_a2
V. P. Mikka. Two sufficient conditions for the univalence of analytic functions. Matematičeskie zametki, Tome 19 (1976) no. 3, pp. 331-346. http://geodesic.mathdoc.fr/item/MZM_1976_19_3_a2/