Absolute convergence of Fourier series in eigenfunctions of an elliptic operator
Matematičeskie zametki, Tome 19 (1976) no. 3, pp. 435-448.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article we investigate absolute convergence of Fourier series in eigenfunctions of an $m$-th order elliptic operator on functions in the Besov class $B_{2,\theta}^{N/2}$. We show that in terms of Besov classes the theorem of Peetre on absolute convergence of series in eigenfunctions in the class $B_{2,1}^{N/2}$ is best possible. We construct a function in $B_{2,\theta}^{N/2}$ whose Fourier series is absolutely divergent at any preassigned point.
@article{MZM_1976_19_3_a12,
     author = {V. S. Serov},
     title = {Absolute convergence of {Fourier} series in eigenfunctions of an elliptic operator},
     journal = {Matemati\v{c}eskie zametki},
     pages = {435--448},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1976_19_3_a12/}
}
TY  - JOUR
AU  - V. S. Serov
TI  - Absolute convergence of Fourier series in eigenfunctions of an elliptic operator
JO  - Matematičeskie zametki
PY  - 1976
SP  - 435
EP  - 448
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1976_19_3_a12/
LA  - ru
ID  - MZM_1976_19_3_a12
ER  - 
%0 Journal Article
%A V. S. Serov
%T Absolute convergence of Fourier series in eigenfunctions of an elliptic operator
%J Matematičeskie zametki
%D 1976
%P 435-448
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1976_19_3_a12/
%G ru
%F MZM_1976_19_3_a12
V. S. Serov. Absolute convergence of Fourier series in eigenfunctions of an elliptic operator. Matematičeskie zametki, Tome 19 (1976) no. 3, pp. 435-448. http://geodesic.mathdoc.fr/item/MZM_1976_19_3_a12/