The order of the best one-sided approximation by polynomials and splines in the $L_p$-metric
Matematičeskie zametki, Tome 19 (1976) no. 3, pp. 323-329.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we determine the order of the best one-sided approximation by polynomials and splines of minimal defect of the classes $W^rL_p$ in the $L_p$-metric.
@article{MZM_1976_19_3_a1,
     author = {V. F. Babenko and A. A. Ligun},
     title = {The order of the best one-sided approximation by polynomials and splines in the $L_p$-metric},
     journal = {Matemati\v{c}eskie zametki},
     pages = {323--329},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1976_19_3_a1/}
}
TY  - JOUR
AU  - V. F. Babenko
AU  - A. A. Ligun
TI  - The order of the best one-sided approximation by polynomials and splines in the $L_p$-metric
JO  - Matematičeskie zametki
PY  - 1976
SP  - 323
EP  - 329
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1976_19_3_a1/
LA  - ru
ID  - MZM_1976_19_3_a1
ER  - 
%0 Journal Article
%A V. F. Babenko
%A A. A. Ligun
%T The order of the best one-sided approximation by polynomials and splines in the $L_p$-metric
%J Matematičeskie zametki
%D 1976
%P 323-329
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1976_19_3_a1/
%G ru
%F MZM_1976_19_3_a1
V. F. Babenko; A. A. Ligun. The order of the best one-sided approximation by polynomials and splines in the $L_p$-metric. Matematičeskie zametki, Tome 19 (1976) no. 3, pp. 323-329. http://geodesic.mathdoc.fr/item/MZM_1976_19_3_a1/