The order of the best one-sided approximation by polynomials and splines in the $L_p$-metric
Matematičeskie zametki, Tome 19 (1976) no. 3, pp. 323-329
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper we determine the order of the best one-sided approximation by polynomials and splines of minimal defect of the classes $W^rL_p$ in the $L_p$-metric.
@article{MZM_1976_19_3_a1,
author = {V. F. Babenko and A. A. Ligun},
title = {The order of the best one-sided approximation by polynomials and splines in the $L_p$-metric},
journal = {Matemati\v{c}eskie zametki},
pages = {323--329},
year = {1976},
volume = {19},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1976_19_3_a1/}
}
TY - JOUR AU - V. F. Babenko AU - A. A. Ligun TI - The order of the best one-sided approximation by polynomials and splines in the $L_p$-metric JO - Matematičeskie zametki PY - 1976 SP - 323 EP - 329 VL - 19 IS - 3 UR - http://geodesic.mathdoc.fr/item/MZM_1976_19_3_a1/ LA - ru ID - MZM_1976_19_3_a1 ER -
V. F. Babenko; A. A. Ligun. The order of the best one-sided approximation by polynomials and splines in the $L_p$-metric. Matematičeskie zametki, Tome 19 (1976) no. 3, pp. 323-329. http://geodesic.mathdoc.fr/item/MZM_1976_19_3_a1/