Asymptotically sharp bounds for the remainder for the best quadrature formulas for several classes of functions
Matematičeskie zametki, Tome 19 (1976) no. 3, pp. 313-322.

Voir la notice de l'article provenant de la source Math-Net.Ru

For certain classes of functions (all functions are defined on a Jordan measurable set $G$) defined by a majorant on the modulus of continuity, we find an asymptotically sharp bound for the remainder of an optimal quadrature formula of the form $$ \int_Gf(x)\,dx\approx\sum_{\nu=1}^mc_\nu f(x^\nu) $$ When the given majorant of the modulus of continuity is $t^\alpha$ and the nonnegative function $P(x)$ is such that for any nonnegative numbera the set $\{x\in G:P(x)\le a\}$ is Jordan measurable, then we also find an asymptotically sharp bound for the remainder of an optimal quadrature formula of the form $$ \int_GP(x)f(x)\,dx\approx\sum_{\nu=1}^mc_\nu f(x^\nu) $$
@article{MZM_1976_19_3_a0,
     author = {V. F. Babenko},
     title = {Asymptotically sharp bounds for the remainder for the best quadrature formulas for several classes of functions},
     journal = {Matemati\v{c}eskie zametki},
     pages = {313--322},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1976_19_3_a0/}
}
TY  - JOUR
AU  - V. F. Babenko
TI  - Asymptotically sharp bounds for the remainder for the best quadrature formulas for several classes of functions
JO  - Matematičeskie zametki
PY  - 1976
SP  - 313
EP  - 322
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1976_19_3_a0/
LA  - ru
ID  - MZM_1976_19_3_a0
ER  - 
%0 Journal Article
%A V. F. Babenko
%T Asymptotically sharp bounds for the remainder for the best quadrature formulas for several classes of functions
%J Matematičeskie zametki
%D 1976
%P 313-322
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1976_19_3_a0/
%G ru
%F MZM_1976_19_3_a0
V. F. Babenko. Asymptotically sharp bounds for the remainder for the best quadrature formulas for several classes of functions. Matematičeskie zametki, Tome 19 (1976) no. 3, pp. 313-322. http://geodesic.mathdoc.fr/item/MZM_1976_19_3_a0/