Asymptotically sharp bounds for the remainder for the best quadrature formulas for several classes of functions
Matematičeskie zametki, Tome 19 (1976) no. 3, pp. 313-322
Cet article a éte moissonné depuis la source Math-Net.Ru
For certain classes of functions (all functions are defined on a Jordan measurable set $G$) defined by a majorant on the modulus of continuity, we find an asymptotically sharp bound for the remainder of an optimal quadrature formula of the form $$ \int_Gf(x)\,dx\approx\sum_{\nu=1}^mc_\nu f(x^\nu) $$ When the given majorant of the modulus of continuity is $t^\alpha$ and the nonnegative function $P(x)$ is such that for any nonnegative numbera the set $\{x\in G:P(x)\le a\}$ is Jordan measurable, then we also find an asymptotically sharp bound for the remainder of an optimal quadrature formula of the form $$ \int_GP(x)f(x)\,dx\approx\sum_{\nu=1}^mc_\nu f(x^\nu) $$
@article{MZM_1976_19_3_a0,
author = {V. F. Babenko},
title = {Asymptotically sharp bounds for the remainder for the best quadrature formulas for several classes of functions},
journal = {Matemati\v{c}eskie zametki},
pages = {313--322},
year = {1976},
volume = {19},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1976_19_3_a0/}
}
TY - JOUR AU - V. F. Babenko TI - Asymptotically sharp bounds for the remainder for the best quadrature formulas for several classes of functions JO - Matematičeskie zametki PY - 1976 SP - 313 EP - 322 VL - 19 IS - 3 UR - http://geodesic.mathdoc.fr/item/MZM_1976_19_3_a0/ LA - ru ID - MZM_1976_19_3_a0 ER -
V. F. Babenko. Asymptotically sharp bounds for the remainder for the best quadrature formulas for several classes of functions. Matematičeskie zametki, Tome 19 (1976) no. 3, pp. 313-322. http://geodesic.mathdoc.fr/item/MZM_1976_19_3_a0/