Solvability of partial differential equations of infinite order in certain classes of entire functions
Matematičeskie zametki, Tome 19 (1976) no. 2, pp. 225-236.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper it is shown that under conditions of applicability of the operator $\mathfrak Ly=\sum_{k\ge0}{a_kD^ky(x)}$ to the class $[\rho,\sigma]$, $\rho=(1,\rho_2$, $\rho_21$, $\sigma=(\sigma_1, \sigma_2)$, $\sigma_1,\sigma_2\infty$ the equation $\mathfrak Ly=f$ has a particular solution of this class $\forall\,f\in[\rho,\sigma]$. The general form of a solution of the homogeneous equation $\mathfrak Ly=0$ is established. The growth of a solution is investigated by means of a system of conjugate orders and a system of conjugate types. A solvability result is also obtained in the class $E(T)=\bigcup\limits_{\sigma\in T}[\rho,\sigma]$, where $T$ is a certain set in $R_+^2$ depending on the operator $\mathfrak L$.
@article{MZM_1976_19_2_a7,
     author = {G. G. Braichev},
     title = {Solvability of partial differential equations of infinite order in certain classes of entire functions},
     journal = {Matemati\v{c}eskie zametki},
     pages = {225--236},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1976_19_2_a7/}
}
TY  - JOUR
AU  - G. G. Braichev
TI  - Solvability of partial differential equations of infinite order in certain classes of entire functions
JO  - Matematičeskie zametki
PY  - 1976
SP  - 225
EP  - 236
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1976_19_2_a7/
LA  - ru
ID  - MZM_1976_19_2_a7
ER  - 
%0 Journal Article
%A G. G. Braichev
%T Solvability of partial differential equations of infinite order in certain classes of entire functions
%J Matematičeskie zametki
%D 1976
%P 225-236
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1976_19_2_a7/
%G ru
%F MZM_1976_19_2_a7
G. G. Braichev. Solvability of partial differential equations of infinite order in certain classes of entire functions. Matematičeskie zametki, Tome 19 (1976) no. 2, pp. 225-236. http://geodesic.mathdoc.fr/item/MZM_1976_19_2_a7/