A class of weighted spaces of entire functions
Matematičeskie zametki, Tome 19 (1976) no. 2, pp. 215-224
Cet article a éte moissonné depuis la source Math-Net.Ru
In the class of weighted spaces of entire functions $$ B_{\Phi(x,y)}=\Bigl\{f(z)\in A_\infty:\sup_{z\in C}\frac{|f(z)|}{\Phi(x,y)}<\infty\Bigr\}\quad(z=x+iy), $$ where $\Phi(x,y)$ is a continuous function on $R^2$ possessing certain additional properties, estimates are obtained for the norms of derivatives and norms of functions involving a translation of the independent variable in terms of the norm of the original function. These estimates are then used to prove the existence and uniqueness of solutions in the spaces $B_{\Phi(x,y)}$ of linear differential-difference equations of infinite order with constant coefficients.
@article{MZM_1976_19_2_a6,
author = {V. A. Bogachev},
title = {A~class of weighted spaces of entire functions},
journal = {Matemati\v{c}eskie zametki},
pages = {215--224},
year = {1976},
volume = {19},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1976_19_2_a6/}
}
V. A. Bogachev. A class of weighted spaces of entire functions. Matematičeskie zametki, Tome 19 (1976) no. 2, pp. 215-224. http://geodesic.mathdoc.fr/item/MZM_1976_19_2_a6/