A~uniqueness theorem for solutions to an inverse problem for the wave equation
Matematičeskie zametki, Tome 19 (1976) no. 2, pp. 211-214.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that in a certain wave equation the coefficient is uniquely determined if the Cauchy data are given and if the solution of the equation is known as a function on a plane and of time.
@article{MZM_1976_19_2_a5,
     author = {Yu. E. Anikonov},
     title = {A~uniqueness theorem for solutions to an inverse problem for the wave equation},
     journal = {Matemati\v{c}eskie zametki},
     pages = {211--214},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1976_19_2_a5/}
}
TY  - JOUR
AU  - Yu. E. Anikonov
TI  - A~uniqueness theorem for solutions to an inverse problem for the wave equation
JO  - Matematičeskie zametki
PY  - 1976
SP  - 211
EP  - 214
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1976_19_2_a5/
LA  - ru
ID  - MZM_1976_19_2_a5
ER  - 
%0 Journal Article
%A Yu. E. Anikonov
%T A~uniqueness theorem for solutions to an inverse problem for the wave equation
%J Matematičeskie zametki
%D 1976
%P 211-214
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1976_19_2_a5/
%G ru
%F MZM_1976_19_2_a5
Yu. E. Anikonov. A~uniqueness theorem for solutions to an inverse problem for the wave equation. Matematičeskie zametki, Tome 19 (1976) no. 2, pp. 211-214. http://geodesic.mathdoc.fr/item/MZM_1976_19_2_a5/