Certain embedding theorems
Matematičeskie zametki, Tome 19 (1976) no. 2, pp. 187-200.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain necessary and sufficient conditions such that, for $f(x)$ from $L^p(0,1)$, the integral $$ \int_0^1|f(x)|^q\,dx\quad(0

1,\quad p

(1-p)^{-1}) $$ is convergent, or for $f\in L^p[0,1]$ for all $p\ge1$, the integral $\int_0^1e^{|f(x)|}\,dx$ is convergent.
@article{MZM_1976_19_2_a3,
     author = {\`E. A. Storozhenko},
     title = {Certain embedding theorems},
     journal = {Matemati\v{c}eskie zametki},
     pages = {187--200},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1976_19_2_a3/}
}
TY  - JOUR
AU  - È. A. Storozhenko
TI  - Certain embedding theorems
JO  - Matematičeskie zametki
PY  - 1976
SP  - 187
EP  - 200
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1976_19_2_a3/
LA  - ru
ID  - MZM_1976_19_2_a3
ER  - 
%0 Journal Article
%A È. A. Storozhenko
%T Certain embedding theorems
%J Matematičeskie zametki
%D 1976
%P 187-200
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1976_19_2_a3/
%G ru
%F MZM_1976_19_2_a3
È. A. Storozhenko. Certain embedding theorems. Matematičeskie zametki, Tome 19 (1976) no. 2, pp. 187-200. http://geodesic.mathdoc.fr/item/MZM_1976_19_2_a3/