Certain embedding theorems
Matematičeskie zametki, Tome 19 (1976) no. 2, pp. 187-200
Voir la notice de l'article provenant de la source Math-Net.Ru
We obtain necessary and sufficient conditions such that, for $f(x)$ from $L^p(0,1)$, the integral
$$
\int_0^1|f(x)|^q\,dx\quad(01,\quad p(1-p)^{-1})
$$
is convergent, or for $f\in L^p[0,1]$ for all $p\ge1$, the integral $\int_0^1e^{|f(x)|}\,dx$ is convergent.
@article{MZM_1976_19_2_a3,
author = {\`E. A. Storozhenko},
title = {Certain embedding theorems},
journal = {Matemati\v{c}eskie zametki},
pages = {187--200},
publisher = {mathdoc},
volume = {19},
number = {2},
year = {1976},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1976_19_2_a3/}
}
È. A. Storozhenko. Certain embedding theorems. Matematičeskie zametki, Tome 19 (1976) no. 2, pp. 187-200. http://geodesic.mathdoc.fr/item/MZM_1976_19_2_a3/