A~necessary condition for convergence of interpolating parabolic and cubic splines
Matematičeskie zametki, Tome 19 (1976) no. 2, pp. 165-178.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let the sequence of nets $\Delta_n$ be such that $\lim\limits_{n\to\infty}\max\limits_ih_i^{(n)}=0$, where $h_i^{(n)}$ are the lengths of the segments of a net. The bound $\max\limits_{|i-j|=1}\frac{h_i^{(n)}}{h_j^{(n)}1-\alpha}\le R\infty$ is necessary in order that interpolating parabolic and cubic splines converge for any function in $C(\alpha=0)$ or $C_\alpha(0\alpha1)$, where $C_\alpha$ is the class of functions satisfying a Lipschitz condition of order $\alpha$. It is also shown that this bound cannot essentially be weakened.
@article{MZM_1976_19_2_a1,
     author = {N. L. Zmatrakov},
     title = {A~necessary condition for convergence of interpolating parabolic and cubic splines},
     journal = {Matemati\v{c}eskie zametki},
     pages = {165--178},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1976_19_2_a1/}
}
TY  - JOUR
AU  - N. L. Zmatrakov
TI  - A~necessary condition for convergence of interpolating parabolic and cubic splines
JO  - Matematičeskie zametki
PY  - 1976
SP  - 165
EP  - 178
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1976_19_2_a1/
LA  - ru
ID  - MZM_1976_19_2_a1
ER  - 
%0 Journal Article
%A N. L. Zmatrakov
%T A~necessary condition for convergence of interpolating parabolic and cubic splines
%J Matematičeskie zametki
%D 1976
%P 165-178
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1976_19_2_a1/
%G ru
%F MZM_1976_19_2_a1
N. L. Zmatrakov. A~necessary condition for convergence of interpolating parabolic and cubic splines. Matematičeskie zametki, Tome 19 (1976) no. 2, pp. 165-178. http://geodesic.mathdoc.fr/item/MZM_1976_19_2_a1/