A necessary condition for convergence of interpolating parabolic and cubic splines
Matematičeskie zametki, Tome 19 (1976) no. 2, pp. 165-178
Cet article a éte moissonné depuis la source Math-Net.Ru
Let the sequence of nets $\Delta_n$ be such that $\lim\limits_{n\to\infty}\max\limits_ih_i^{(n)}=0$, where $h_i^{(n)}$ are the lengths of the segments of a net. The bound $\max\limits_{|i-j|=1}\frac{h_i^{(n)}}{h_j^{(n)}1-\alpha}\le R<\infty$ is necessary in order that interpolating parabolic and cubic splines converge for any function in $C(\alpha=0)$ or $C_\alpha(0<\alpha<1)$, where $C_\alpha$ is the class of functions satisfying a Lipschitz condition of order $\alpha$. It is also shown that this bound cannot essentially be weakened.
@article{MZM_1976_19_2_a1,
author = {N. L. Zmatrakov},
title = {A~necessary condition for convergence of interpolating parabolic and cubic splines},
journal = {Matemati\v{c}eskie zametki},
pages = {165--178},
year = {1976},
volume = {19},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1976_19_2_a1/}
}
N. L. Zmatrakov. A necessary condition for convergence of interpolating parabolic and cubic splines. Matematičeskie zametki, Tome 19 (1976) no. 2, pp. 165-178. http://geodesic.mathdoc.fr/item/MZM_1976_19_2_a1/