An expanding system of linearly closed sets
Matematičeskie zametki, Tome 19 (1976) no. 1, pp. 67-84.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this note it is proved that if an open cube in the Euclidean space $R^n$ can be represented in the form of the union of an expanding system of linearly closed sets, then at least one of them has an interior point. This result is applied to the investigation of real-valued functions of several variables.
@article{MZM_1976_19_1_a7,
     author = {C. G. Slobodnik},
     title = {An expanding system of linearly closed sets},
     journal = {Matemati\v{c}eskie zametki},
     pages = {67--84},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1976_19_1_a7/}
}
TY  - JOUR
AU  - C. G. Slobodnik
TI  - An expanding system of linearly closed sets
JO  - Matematičeskie zametki
PY  - 1976
SP  - 67
EP  - 84
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1976_19_1_a7/
LA  - ru
ID  - MZM_1976_19_1_a7
ER  - 
%0 Journal Article
%A C. G. Slobodnik
%T An expanding system of linearly closed sets
%J Matematičeskie zametki
%D 1976
%P 67-84
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1976_19_1_a7/
%G ru
%F MZM_1976_19_1_a7
C. G. Slobodnik. An expanding system of linearly closed sets. Matematičeskie zametki, Tome 19 (1976) no. 1, pp. 67-84. http://geodesic.mathdoc.fr/item/MZM_1976_19_1_a7/