Inner functions in $C^n$
Matematičeskie zametki, Tome 19 (1976) no. 1, pp. 63-66.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we prove that if $f$ is a holomorphic function in a strictly pseudoconvex region $D\subset C^n$, $n>1$, with radial limit equal to 1 in modulus at each point of some nonempty open subset $S$ of the boundary of $D$, then $f\equiv\mathrm{const}$ in $D$.
@article{MZM_1976_19_1_a6,
     author = {A. Sadullaev},
     title = {Inner functions in $C^n$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {63--66},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1976_19_1_a6/}
}
TY  - JOUR
AU  - A. Sadullaev
TI  - Inner functions in $C^n$
JO  - Matematičeskie zametki
PY  - 1976
SP  - 63
EP  - 66
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1976_19_1_a6/
LA  - ru
ID  - MZM_1976_19_1_a6
ER  - 
%0 Journal Article
%A A. Sadullaev
%T Inner functions in $C^n$
%J Matematičeskie zametki
%D 1976
%P 63-66
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1976_19_1_a6/
%G ru
%F MZM_1976_19_1_a6
A. Sadullaev. Inner functions in $C^n$. Matematičeskie zametki, Tome 19 (1976) no. 1, pp. 63-66. http://geodesic.mathdoc.fr/item/MZM_1976_19_1_a6/