Integral representation of a class of univalent functions
Matematičeskie zametki, Tome 19 (1976) no. 1, pp. 41-48
Cet article a éte moissonné depuis la source Math-Net.Ru
We refine and generalize a result of V. A. Zmorovich on the integral representation of a class of univalent functions which are convex in some direction. We prove that all function of the class being considered can be approximated by a Schwarz–Christoffel integral of a special form belonging to the same class.
@article{MZM_1976_19_1_a4,
author = {D. V. Prokhorov and B. N. Rakhmanov},
title = {Integral representation of a~class of univalent functions},
journal = {Matemati\v{c}eskie zametki},
pages = {41--48},
year = {1976},
volume = {19},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1976_19_1_a4/}
}
D. V. Prokhorov; B. N. Rakhmanov. Integral representation of a class of univalent functions. Matematičeskie zametki, Tome 19 (1976) no. 1, pp. 41-48. http://geodesic.mathdoc.fr/item/MZM_1976_19_1_a4/