Integral representation of a~class of univalent functions
Matematičeskie zametki, Tome 19 (1976) no. 1, pp. 41-48.

Voir la notice de l'article provenant de la source Math-Net.Ru

We refine and generalize a result of V. A. Zmorovich on the integral representation of a class of univalent functions which are convex in some direction. We prove that all function of the class being considered can be approximated by a Schwarz–Christoffel integral of a special form belonging to the same class.
@article{MZM_1976_19_1_a4,
     author = {D. V. Prokhorov and B. N. Rakhmanov},
     title = {Integral representation of a~class of univalent functions},
     journal = {Matemati\v{c}eskie zametki},
     pages = {41--48},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1976_19_1_a4/}
}
TY  - JOUR
AU  - D. V. Prokhorov
AU  - B. N. Rakhmanov
TI  - Integral representation of a~class of univalent functions
JO  - Matematičeskie zametki
PY  - 1976
SP  - 41
EP  - 48
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1976_19_1_a4/
LA  - ru
ID  - MZM_1976_19_1_a4
ER  - 
%0 Journal Article
%A D. V. Prokhorov
%A B. N. Rakhmanov
%T Integral representation of a~class of univalent functions
%J Matematičeskie zametki
%D 1976
%P 41-48
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1976_19_1_a4/
%G ru
%F MZM_1976_19_1_a4
D. V. Prokhorov; B. N. Rakhmanov. Integral representation of a~class of univalent functions. Matematičeskie zametki, Tome 19 (1976) no. 1, pp. 41-48. http://geodesic.mathdoc.fr/item/MZM_1976_19_1_a4/