Possible generalizations of the Minagawa–Rado Lemma on the rigidity of a surface of revolution with a fixed parallel
Matematičeskie zametki, Tome 19 (1976) no. 1, pp. 123-132
Cet article a éte moissonné depuis la source Math-Net.Ru
A general necessary and sufficient criterion is established for the rigidity of a surface of revolution $S\in C^1$ under the condition of a fixed parallel. Also two simple sufficient criteria for this property are given. It is shown by an example that this property does not hold for $S\in C^1$ in the general case.
@article{MZM_1976_19_1_a14,
author = {I. Kh. Sabitov},
title = {Possible generalizations of the {Minagawa{\textendash}Rado} {Lemma} on the rigidity of a~surface of revolution with a~fixed parallel},
journal = {Matemati\v{c}eskie zametki},
pages = {123--132},
year = {1976},
volume = {19},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1976_19_1_a14/}
}
TY - JOUR AU - I. Kh. Sabitov TI - Possible generalizations of the Minagawa–Rado Lemma on the rigidity of a surface of revolution with a fixed parallel JO - Matematičeskie zametki PY - 1976 SP - 123 EP - 132 VL - 19 IS - 1 UR - http://geodesic.mathdoc.fr/item/MZM_1976_19_1_a14/ LA - ru ID - MZM_1976_19_1_a14 ER -
I. Kh. Sabitov. Possible generalizations of the Minagawa–Rado Lemma on the rigidity of a surface of revolution with a fixed parallel. Matematičeskie zametki, Tome 19 (1976) no. 1, pp. 123-132. http://geodesic.mathdoc.fr/item/MZM_1976_19_1_a14/