A~characterization of the groups $L_3(2^n)$
Matematičeskie zametki, Tome 18 (1975) no. 6, pp. 861-868
Voir la notice de l'article provenant de la source Math-Net.Ru
This note is concerned with finite groups in which a Sylow two-subgroup $S$ has an elementary Abelian subgroup $E$ of order $2^{2n}$, $n\ge2$, such that $E=A\times Z(S)$, $|A|=2^n$, and $C_S(a)=E$ for any involution $a\in A$.
It is proved that a simple group satisfying this condition is isomorphic to $L_3(2^n)$.
@article{MZM_1975_18_6_a7,
author = {A. P. Il'inykh},
title = {A~characterization of the groups $L_3(2^n)$},
journal = {Matemati\v{c}eskie zametki},
pages = {861--868},
publisher = {mathdoc},
volume = {18},
number = {6},
year = {1975},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1975_18_6_a7/}
}
A. P. Il'inykh. A~characterization of the groups $L_3(2^n)$. Matematičeskie zametki, Tome 18 (1975) no. 6, pp. 861-868. http://geodesic.mathdoc.fr/item/MZM_1975_18_6_a7/