A~characterization of the groups $L_3(2^n)$
Matematičeskie zametki, Tome 18 (1975) no. 6, pp. 861-868.

Voir la notice de l'article provenant de la source Math-Net.Ru

This note is concerned with finite groups in which a Sylow two-subgroup $S$ has an elementary Abelian subgroup $E$ of order $2^{2n}$, $n\ge2$, such that $E=A\times Z(S)$, $|A|=2^n$, and $C_S(a)=E$ for any involution $a\in A$. It is proved that a simple group satisfying this condition is isomorphic to $L_3(2^n)$.
@article{MZM_1975_18_6_a7,
     author = {A. P. Il'inykh},
     title = {A~characterization of the groups $L_3(2^n)$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {861--868},
     publisher = {mathdoc},
     volume = {18},
     number = {6},
     year = {1975},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1975_18_6_a7/}
}
TY  - JOUR
AU  - A. P. Il'inykh
TI  - A~characterization of the groups $L_3(2^n)$
JO  - Matematičeskie zametki
PY  - 1975
SP  - 861
EP  - 868
VL  - 18
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1975_18_6_a7/
LA  - ru
ID  - MZM_1975_18_6_a7
ER  - 
%0 Journal Article
%A A. P. Il'inykh
%T A~characterization of the groups $L_3(2^n)$
%J Matematičeskie zametki
%D 1975
%P 861-868
%V 18
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1975_18_6_a7/
%G ru
%F MZM_1975_18_6_a7
A. P. Il'inykh. A~characterization of the groups $L_3(2^n)$. Matematičeskie zametki, Tome 18 (1975) no. 6, pp. 861-868. http://geodesic.mathdoc.fr/item/MZM_1975_18_6_a7/