A~system of functions
Matematičeskie zametki, Tome 18 (1975) no. 6, pp. 855-860.

Voir la notice de l'article provenant de la source Math-Net.Ru

A system of functions $$ f_k(x)=\sum_{i=1}^r\alpha_i\varphi_i(x)^k+b_i\overline\varphi_i(x)^k,\quad k=1,2,\dots $$ is considered on the interval $[0,l]$. Under certain conditions on the $\varphi_i(x)$, it is proved that the system $1\cup\{f_k(x)\}_{k=1}^\infty$ is complete in the space $L_p(0,l)$. In the case $r=1$ it is proved, under certain additional assumptions, that the system $\{f_k(x)\}_{k=0}^\infty$ is minimal.
@article{MZM_1975_18_6_a6,
     author = {A. A. Shkalikov},
     title = {A~system of functions},
     journal = {Matemati\v{c}eskie zametki},
     pages = {855--860},
     publisher = {mathdoc},
     volume = {18},
     number = {6},
     year = {1975},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1975_18_6_a6/}
}
TY  - JOUR
AU  - A. A. Shkalikov
TI  - A~system of functions
JO  - Matematičeskie zametki
PY  - 1975
SP  - 855
EP  - 860
VL  - 18
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1975_18_6_a6/
LA  - ru
ID  - MZM_1975_18_6_a6
ER  - 
%0 Journal Article
%A A. A. Shkalikov
%T A~system of functions
%J Matematičeskie zametki
%D 1975
%P 855-860
%V 18
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1975_18_6_a6/
%G ru
%F MZM_1975_18_6_a6
A. A. Shkalikov. A~system of functions. Matematičeskie zametki, Tome 18 (1975) no. 6, pp. 855-860. http://geodesic.mathdoc.fr/item/MZM_1975_18_6_a6/