The rational approximation of convex functions of the class $\operatorname{Lip}\alpha$
Matematičeskie zametki, Tome 18 (1975) no. 6, pp. 845-854
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that if a function $f(x)$ is convex on $[a,b]$ and $f\in\operatorname{Lip}_{K(f)}\alpha$, $0\alpha1$, then the least uniform deviation of this function from rational functions of degree not higher than $n$ does not exceed $C(\alpha,\nu)(b-a)^\alpha K(f)\cdot n^{-2}\cdot\overbrace{\ln\dots\ln n}^{\nu\text{раз}}$ ($\nu$ is a natural number; $C(\alpha,\nu)$ depends only on $\alpha$ and $\nu$; $K(f)$ is a Lipschitz constant; and $n\ge n(\nu)=\min\{n:\overbrace{\ln\dots\ln n}^{\nu\text{раз}}\}$).
@article{MZM_1975_18_6_a5,
author = {A. Khatamov},
title = {The rational approximation of convex functions of the class $\operatorname{Lip}\alpha$},
journal = {Matemati\v{c}eskie zametki},
pages = {845--854},
publisher = {mathdoc},
volume = {18},
number = {6},
year = {1975},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1975_18_6_a5/}
}
A. Khatamov. The rational approximation of convex functions of the class $\operatorname{Lip}\alpha$. Matematičeskie zametki, Tome 18 (1975) no. 6, pp. 845-854. http://geodesic.mathdoc.fr/item/MZM_1975_18_6_a5/