An inverse scattering problem for a~perturbed Hill's operator
Matematičeskie zametki, Tome 18 (1975) no. 6, pp. 831-843
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the inverse scattering problem for the operator $L=-d^2/dx^2+p(x)+q(x)$, $x\in R^1$. The perturbation potential $q$ is expressed in terms of the periodic potential $p$ and the scattering data. We also obtain identities for the eigenfunctions of the unperturbed Hill's operator $L_0=-d^2/dx^2+p(x)$.
@article{MZM_1975_18_6_a4,
author = {N. E. Firsova},
title = {An inverse scattering problem for a~perturbed {Hill's} operator},
journal = {Matemati\v{c}eskie zametki},
pages = {831--843},
publisher = {mathdoc},
volume = {18},
number = {6},
year = {1975},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1975_18_6_a4/}
}
N. E. Firsova. An inverse scattering problem for a~perturbed Hill's operator. Matematičeskie zametki, Tome 18 (1975) no. 6, pp. 831-843. http://geodesic.mathdoc.fr/item/MZM_1975_18_6_a4/