The divergence of spectral decompositions connected with homogeneous elliptic operators
Matematičeskie zametki, Tome 18 (1975) no. 6, pp. 887-894
Cet article a éte moissonné depuis la source Math-Net.Ru
In this work an asymptotic formula is obtained for the means of the Riesz spectral function of a homogeneous elliptic operator of arbitrary order $m\ge2$ with constant coefficients. Conditions are obtained under which localization (and convergence) of the means of the Riesz spectral decompositions of functions from the Hölder class is absent.
@article{MZM_1975_18_6_a10,
author = {A. K. Pulatov},
title = {The divergence of spectral decompositions connected with homogeneous elliptic operators},
journal = {Matemati\v{c}eskie zametki},
pages = {887--894},
year = {1975},
volume = {18},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1975_18_6_a10/}
}
A. K. Pulatov. The divergence of spectral decompositions connected with homogeneous elliptic operators. Matematičeskie zametki, Tome 18 (1975) no. 6, pp. 887-894. http://geodesic.mathdoc.fr/item/MZM_1975_18_6_a10/