The existence of a~fundamental solution of power growth for systems of difference equations
Matematičeskie zametki, Tome 18 (1975) no. 5, pp. 731-734
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that any nondegenerate system of difference equations of finite order with constant coefficients has a fundamental solution, increasing not faster then some power of the distance from the origin. A proof is obtained by the reduction to a known similar result for the case of one equation.
@article{MZM_1975_18_5_a9,
author = {A. Ya. Belyankov},
title = {The existence of a~fundamental solution of power growth for systems of difference equations},
journal = {Matemati\v{c}eskie zametki},
pages = {731--734},
publisher = {mathdoc},
volume = {18},
number = {5},
year = {1975},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1975_18_5_a9/}
}
TY - JOUR AU - A. Ya. Belyankov TI - The existence of a~fundamental solution of power growth for systems of difference equations JO - Matematičeskie zametki PY - 1975 SP - 731 EP - 734 VL - 18 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_1975_18_5_a9/ LA - ru ID - MZM_1975_18_5_a9 ER -
A. Ya. Belyankov. The existence of a~fundamental solution of power growth for systems of difference equations. Matematičeskie zametki, Tome 18 (1975) no. 5, pp. 731-734. http://geodesic.mathdoc.fr/item/MZM_1975_18_5_a9/