Generalized uniserial rings
Matematičeskie zametki, Tome 18 (1975) no. 5, pp. 705-710.

Voir la notice de l'article provenant de la source Math-Net.Ru

The following conditions are shown to be equivalent: 1) ring $A$ is generalized uniserial (not necessarily artinian); 2) every finitely presented $A$ module is semiserial; 3) $A$ is semiperfect and the projective cover of every indecomposable finitely presented module is indecomposable.
@article{MZM_1975_18_5_a6,
     author = {Yu. A. Drozd},
     title = {Generalized uniserial rings},
     journal = {Matemati\v{c}eskie zametki},
     pages = {705--710},
     publisher = {mathdoc},
     volume = {18},
     number = {5},
     year = {1975},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1975_18_5_a6/}
}
TY  - JOUR
AU  - Yu. A. Drozd
TI  - Generalized uniserial rings
JO  - Matematičeskie zametki
PY  - 1975
SP  - 705
EP  - 710
VL  - 18
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1975_18_5_a6/
LA  - ru
ID  - MZM_1975_18_5_a6
ER  - 
%0 Journal Article
%A Yu. A. Drozd
%T Generalized uniserial rings
%J Matematičeskie zametki
%D 1975
%P 705-710
%V 18
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1975_18_5_a6/
%G ru
%F MZM_1975_18_5_a6
Yu. A. Drozd. Generalized uniserial rings. Matematičeskie zametki, Tome 18 (1975) no. 5, pp. 705-710. http://geodesic.mathdoc.fr/item/MZM_1975_18_5_a6/