The number of integer points under a~parabola
Matematičeskie zametki, Tome 18 (1975) no. 5, pp. 699-704.

Voir la notice de l'article provenant de la source Math-Net.Ru

The remainder term for the number of integer points under the parabola in the region $0$, $0$ admits a bound $O(a^{1/2+c\ln\ln a})$ with the unimprovable exponent 1/2.
@article{MZM_1975_18_5_a5,
     author = {V. N. Popov},
     title = {The number of integer points under a~parabola},
     journal = {Matemati\v{c}eskie zametki},
     pages = {699--704},
     publisher = {mathdoc},
     volume = {18},
     number = {5},
     year = {1975},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1975_18_5_a5/}
}
TY  - JOUR
AU  - V. N. Popov
TI  - The number of integer points under a~parabola
JO  - Matematičeskie zametki
PY  - 1975
SP  - 699
EP  - 704
VL  - 18
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1975_18_5_a5/
LA  - ru
ID  - MZM_1975_18_5_a5
ER  - 
%0 Journal Article
%A V. N. Popov
%T The number of integer points under a~parabola
%J Matematičeskie zametki
%D 1975
%P 699-704
%V 18
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1975_18_5_a5/
%G ru
%F MZM_1975_18_5_a5
V. N. Popov. The number of integer points under a~parabola. Matematičeskie zametki, Tome 18 (1975) no. 5, pp. 699-704. http://geodesic.mathdoc.fr/item/MZM_1975_18_5_a5/