The completeness of systems of functions of the Mittag--Leffler type for weighted uniform approximation in a~complex
Matematičeskie zametki, Tome 18 (1975) no. 5, pp. 675-685.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a given $\rho$ ($1/2\rho+\infty$) let us set $L_\rho=\{z:|\arg z|=\pi/(2\rho)\}$ and assume that a real valued measurable function $\varphi(t)$ such that $\varphi(t)\ge1$ ($t\in L_\rho$) and $\lim\limits_{|t|\to+\infty}\varphi(t)=+\infty$ $(t\in L_\rho)$ is defined on $L_\rho$. Let $C_\varphi(L_\rho)$ denote the space of continuous functions $f(t)$ on $L_\rho$ such that $\lim\frac{f(t)}{\varphi(t)}=0$, where the norm of an elementf is defined as: $\|f\|=\sup\limits_{t\in L_\rho}\frac{|f(t)|}{\varphi(t)}$. In this note we pose the question about the completeness of the system of functions of the Mittag-Leffler type $\{E_\rho(ut;\mu)\}$ ($\mu\ge1$, $0\le u\le a$) or, what is the same thing, of the system of functions $p(t)=\int_0^aE_\rho(ut;\mu)\,d\sigma(u)$ in $C_\varphi(L_\rho)$. The following theorem is proved: The system of functions of the Mittag-Leffler type is complete in $C_\varphi(L_\rho)$ if and only if $\sup|p(z)|\equiv+\infty$, $z\in L_\rho$, where the supremum is taken over the set of functions $p(t)$ such that $\|p(t)(t+1)^{-1}\|\le1$.
@article{MZM_1975_18_5_a3,
     author = {I. O. Khachatryan},
     title = {The completeness of systems of functions of the {Mittag--Leffler} type for weighted uniform approximation in a~complex},
     journal = {Matemati\v{c}eskie zametki},
     pages = {675--685},
     publisher = {mathdoc},
     volume = {18},
     number = {5},
     year = {1975},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1975_18_5_a3/}
}
TY  - JOUR
AU  - I. O. Khachatryan
TI  - The completeness of systems of functions of the Mittag--Leffler type for weighted uniform approximation in a~complex
JO  - Matematičeskie zametki
PY  - 1975
SP  - 675
EP  - 685
VL  - 18
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1975_18_5_a3/
LA  - ru
ID  - MZM_1975_18_5_a3
ER  - 
%0 Journal Article
%A I. O. Khachatryan
%T The completeness of systems of functions of the Mittag--Leffler type for weighted uniform approximation in a~complex
%J Matematičeskie zametki
%D 1975
%P 675-685
%V 18
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1975_18_5_a3/
%G ru
%F MZM_1975_18_5_a3
I. O. Khachatryan. The completeness of systems of functions of the Mittag--Leffler type for weighted uniform approximation in a~complex. Matematičeskie zametki, Tome 18 (1975) no. 5, pp. 675-685. http://geodesic.mathdoc.fr/item/MZM_1975_18_5_a3/