Analogs of the Luzin--Danzhua and Cantor--Lebesgue theorems for double trigonometric series
Matematičeskie zametki, Tome 18 (1975) no. 5, pp. 659-674.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\|\cdot\|$ be some norm in $R^2$, $\Gamma$ be the unit sphere induced in $R^2$ by this norm, and $\{A_j\}$ a sequence of disjoint subsets of $R_+$ such that if $\nu\in A_j$, then $\nu\cdot\Gamma\cap Z^N\ne\varnothing$. For series of the form $$ \sum_{j=1}^\infty\sum_{\|n\|\in A_j}c_ne^{2\pi i(n_1x_1+n_2x_2)} $$ analogs of the Luzin–Danzhu and Cantor–Lebesgue theorems are established.
@article{MZM_1975_18_5_a2,
     author = {V. S. Panferov},
     title = {Analogs of the {Luzin--Danzhua} and {Cantor--Lebesgue} theorems for double trigonometric series},
     journal = {Matemati\v{c}eskie zametki},
     pages = {659--674},
     publisher = {mathdoc},
     volume = {18},
     number = {5},
     year = {1975},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1975_18_5_a2/}
}
TY  - JOUR
AU  - V. S. Panferov
TI  - Analogs of the Luzin--Danzhua and Cantor--Lebesgue theorems for double trigonometric series
JO  - Matematičeskie zametki
PY  - 1975
SP  - 659
EP  - 674
VL  - 18
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1975_18_5_a2/
LA  - ru
ID  - MZM_1975_18_5_a2
ER  - 
%0 Journal Article
%A V. S. Panferov
%T Analogs of the Luzin--Danzhua and Cantor--Lebesgue theorems for double trigonometric series
%J Matematičeskie zametki
%D 1975
%P 659-674
%V 18
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1975_18_5_a2/
%G ru
%F MZM_1975_18_5_a2
V. S. Panferov. Analogs of the Luzin--Danzhua and Cantor--Lebesgue theorems for double trigonometric series. Matematičeskie zametki, Tome 18 (1975) no. 5, pp. 659-674. http://geodesic.mathdoc.fr/item/MZM_1975_18_5_a2/