Analogs of the Luzin–Danzhua and Cantor–Lebesgue theorems for double trigonometric series
Matematičeskie zametki, Tome 18 (1975) no. 5, pp. 659-674
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $\|\cdot\|$ be some norm in $R^2$, $\Gamma$ be the unit sphere induced in $R^2$ by this norm, and $\{A_j\}$ a sequence of disjoint subsets of $R_+$ such that if $\nu\in A_j$, then $\nu\cdot\Gamma\cap Z^N\ne\varnothing$. For series of the form $$ \sum_{j=1}^\infty\sum_{\|n\|\in A_j}c_ne^{2\pi i(n_1x_1+n_2x_2)} $$ analogs of the Luzin–Danzhu and Cantor–Lebesgue theorems are established.
@article{MZM_1975_18_5_a2,
author = {V. S. Panferov},
title = {Analogs of the {Luzin{\textendash}Danzhua} and {Cantor{\textendash}Lebesgue} theorems for double trigonometric series},
journal = {Matemati\v{c}eskie zametki},
pages = {659--674},
year = {1975},
volume = {18},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1975_18_5_a2/}
}
V. S. Panferov. Analogs of the Luzin–Danzhua and Cantor–Lebesgue theorems for double trigonometric series. Matematičeskie zametki, Tome 18 (1975) no. 5, pp. 659-674. http://geodesic.mathdoc.fr/item/MZM_1975_18_5_a2/