The application of an interpolational method
Matematičeskie zametki, Tome 18 (1975) no. 5, pp. 735-752
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider an equation of infinite order in generalized derivatives in the sense of A. O. Gel'fond with a characteristic function of finite order $L(\lambda)=L_1(\lambda)\dots L_n(\lambda)$. It is explained by a purely analytical method (by the application of an interpolational method) when any solution of the equation is the sum of the solutions of similar equations with the characteristic functions $L_1(\lambda)\dots L_n(\lambda)$. In the case of an equation in ordinary derivatives, when $L(\lambda)$ is a function of exponential type, the problem is solved by the application of algebraic and functional methods of V. V. Napalkov [1].
@article{MZM_1975_18_5_a10,
author = {A. F. Leont'ev},
title = {The application of an interpolational method},
journal = {Matemati\v{c}eskie zametki},
pages = {735--752},
year = {1975},
volume = {18},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1975_18_5_a10/}
}
A. F. Leont'ev. The application of an interpolational method. Matematičeskie zametki, Tome 18 (1975) no. 5, pp. 735-752. http://geodesic.mathdoc.fr/item/MZM_1975_18_5_a10/