The inverse problem for differential operators of second order with regular boundary conditions
Matematičeskie zametki, Tome 18 (1975) no. 4, pp. 569-576.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to the proof of the unique solvability of the inverse problem for second-order differential operators with arbitrary regular nonseparable boundary conditions. It is shown that the operator can be recovered from three of its spectra. As a special case, the well-known reconstruction of the Sturm–Liouville operator is accomplished.
@article{MZM_1975_18_4_a9,
     author = {V. A. Yurko},
     title = {The inverse problem for differential operators of second order with regular boundary conditions},
     journal = {Matemati\v{c}eskie zametki},
     pages = {569--576},
     publisher = {mathdoc},
     volume = {18},
     number = {4},
     year = {1975},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1975_18_4_a9/}
}
TY  - JOUR
AU  - V. A. Yurko
TI  - The inverse problem for differential operators of second order with regular boundary conditions
JO  - Matematičeskie zametki
PY  - 1975
SP  - 569
EP  - 576
VL  - 18
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1975_18_4_a9/
LA  - ru
ID  - MZM_1975_18_4_a9
ER  - 
%0 Journal Article
%A V. A. Yurko
%T The inverse problem for differential operators of second order with regular boundary conditions
%J Matematičeskie zametki
%D 1975
%P 569-576
%V 18
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1975_18_4_a9/
%G ru
%F MZM_1975_18_4_a9
V. A. Yurko. The inverse problem for differential operators of second order with regular boundary conditions. Matematičeskie zametki, Tome 18 (1975) no. 4, pp. 569-576. http://geodesic.mathdoc.fr/item/MZM_1975_18_4_a9/