Traces of functions with majorizable derivatives
Matematičeskie zametki, Tome 18 (1975) no. 4, pp. 499-506
Cet article a éte moissonné depuis la source Math-Net.Ru
We study the limiting values ($y\to+0$) of functions $f(x,y)$: $x\in R_n$, $y>0$, for which $\left|{\partial f}/{\partial y}\right|\leqslant M\varphi(y)$; $\left|{\partial f}/{\partial x_k}\right|\leqslant M\psi_k(y)$, $M=M[f]$, in the case of arbitrary weight functions. It is shown that the space of traces can be described as the set of all functions $f(x,0)$ which satisfy a Lipschitz condition in some metric $\omega(x,\tilde{x})$ associated with the weights.
@article{MZM_1975_18_4_a2,
author = {G. A. Kalyabin},
title = {Traces of functions with majorizable derivatives},
journal = {Matemati\v{c}eskie zametki},
pages = {499--506},
year = {1975},
volume = {18},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1975_18_4_a2/}
}
G. A. Kalyabin. Traces of functions with majorizable derivatives. Matematičeskie zametki, Tome 18 (1975) no. 4, pp. 499-506. http://geodesic.mathdoc.fr/item/MZM_1975_18_4_a2/